Blue Carbon

Metabolism and its controls

Seagrass meadows are metabolic hot spots in coastal waters that capture and cycle large amounts of carbon. Quantifying seagrass metabolism and understanding its controls is important for motivating and optimizing efforts for restoration and conservation.

Key Findings

Seagrass meadows strongly enhance ecosystem metabolism

Aquatic eddy covariance is the preferred method to quantify metabolism because measurements are made under in situ conditions without disturbing flow, light, and nutrient exchange; it has a high temporal resolution; and it integrates over a large area (10 -100 m2) (Berg et al. 2003, 2007, 2017, Rheuban & Berg 2013)

Rates of primary production and respiration in seagrass meadows are 10-25x higher than adjacent bare sediments (Hume et al. 2011, Rheuban et al. 2014a,b)

Drivers of metabolism are complex and vary on different time scales

Beyond light, on a short time scale (minutes to hours) in situ metabolism is driven by current velocity and wave action (Hume et al. 2011, Rheuban et al. 2014a, Berg et al. 2017)

On longer time scales (days to years), metabolism varies with temperature and seagrass density (Rheuban et al. 2014b, Berg et al. 2017, Berger et al. 2020)

Integrated long-term aquatic eddy covariance measurements (11 years) suggest that seagrass meadow production and respiration are balanced, and that carbon burial matches net external inputs to the meadow (Berger et al. 2020)

Seagrass meadows can switch from being a sink to a source of carbon

Seagrass meadows can shift from being a sink to a source of carbon between months, seasons, and years depending on local environmental conditions (Berg et al. 2019, Berger et al. 2020)

High-temperature disturbance turned the seagrass meadow from a carbon sink to a source; during recovery the meadow again became a carbon sink (Berger et al. 2020)

In situ metabolic measurements show no stimulation of photosynthesis at high CO2 and low O2 concentrations, questioning if seagrass will be ‘winners’ in future oceans (Berg et al. 2019)

Storage and offset credits

Seagrass habitats provide important ecosystem services, including supporting diverse faunal communities. Spatial processes, such as dispersal and patchy disturbances, play a role in mediating diversity. We study how the state change from bare sediment to seagrass meadows structures biodiversity and interactions at population and community levels. We also point to work done by our colleagues at the Virginia Institute of Marine Sciences on faunal communities.

Key Findings

Restoration reinstates blue carbon stores

Rates of carbon storage in sediments of seagrass meadows restored by seeding is equivalent to natural meadows after a decade (Greiner et al. 2013)

Under half of the carbon buried in meadow sediments derives from seagrass; the remainder is either advected into the meadow from adjacent ecosystems or produced in situ (Greiner et al. 2016; Oreska et al. 2017a)

Sources of buried carbon are: 40% seagrass, 10% marsh, and 50% benthic microalgae; benthic microalgal carbon is produced in situ, not advected into the meadow as previously believed (Greiner et al. 2016; Oreska et al. 2017a)

Sediment carbon stock are spatially variable and drivers are different on the plot and meadow scales. On the plot scale (m2), meadow age and shoot density determine sediment carbon stocks; at the meadow scale, proximity to the meadow edge is the most important factor (Oreska et al. 2017b)

Integrated long-term aquatic eddy covariance measurements (11 years) suggest that seagrass meadow production and respiration are balanced, and that carbon burial matches net external inputs to the meadow (Berger et al. 2020)

Seagrass blue carbon is vulnerable to marine heatwaves. Entire carbon stocks built up in sediments over decades can be lost if meadows die back, as well as carbon sequestration capacity in plant biomass. In some regions, rapid seagrass recovery can prevent large-scale loss. (Berger et al. 2020, Aoki et al. in review)

Seagrass meadows have potential to offset greenhouse gas emissions

Our team wrote the seagrass section of the Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration administered by Verra, the international protocol that provides a mechanism for issuing carbon offsets in the voluntary carbon market (Needleman et al 2018)

All greenhouse gas accounting parameters were measured for the first time in a seagrass meadow and showed that it offsets 0.42 tCO2e ha−1 yr−1. This is roughly equivalent to the IPCC sequestration rate for seagrass (Oreska et al. 2020)

The restored meadow is a net sink for greenhouse gases, despite tripling the N2O flux and increasing the CH4 flux 8-fold (Oreska et al. 2020)

Related Publications

Berger, A., P. Berg, K. McGlathery, M.L. Delgard. 2020. Long-term trends in seagrass metabolism measured by eddy covariance. Limnology and Oceanography.  doi: 10.1002/lno.11397
 
Oreska, M.P.J., K.J. McGlathery, L. Aoki, P. Berg, A. Berger. 2020. Net greenhouse gas benefits of the Virginia eelgrass (Zostera marina) restoration: a seagrass blue carbon case study. Nature Scientific Reports. https://doi.org/10.1038/s41598-020-64094-1
 
Berg, P., M. L. Delgard, M.L., P. Polsenaere, K.J. McGlathery, S.C. Doney, and A.C. Berger. 2019. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnology and Oceanography. https://doi.org/10.1002/lno.11236.

Macreadie,, P.I., A. Anton, J.A. Raven, N. Beaumont, R.M. Connolly, D.A. Friess, J.J. Kelleway, H. Kennedy, T. Kuwae, P.S. Lavery, C.E. Lovelock, D.A. Smale, E.T. Apostolaki, T.B. Atwood, J. Baldock, T.S. Bianchi, G.L. Chmura, B.D. Eyre, J.W. Fourqurean, J.M. Hall-Spencer, M. Huxham, I.E. Hendriks, D. Krause-Jensen, D. Laffoley, T. Luisetti, N. Marbà, P. Masque, K.J. McGlathery, P.J. Megonigal, D. Murdiyarso, B.D. Russell, R. Santos, O. Serrano, B.R. Silliman, K. Watanabe, C.M. Duarte. 2019. The future of blue carbon science. Nature Communications. https://doi.org/10.1038/s41467-019-11693-w
 
Oreska, M. P. J., K. J. McGlathery, R. J. Orth, and D. J. Wilcox.  2019. Seagrass mapping: A survey of recent seagrass distribution literature.  In: L. Windham-Myers, S. Crooks, and T. Troxler (eds.). A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Policy, and Practice. CRC Press, Boca Raton, FL.
 
Sanderne, V., P.I. Macreadie, D.T. Maher, J.J. Middelburg, O, Serrano, J. Almahasheer, A. Arias-Oriz, M. Cusack, B.D. Eyre, J. Fourqurean, H. Kennedy, D. Krause-Jensen, T. Kuwae, P. Lavery, C.E. Lovelock, N. Marba, P. Masque, M.A. Mateo, I. Mazarrasa, K.J. McGlathery, M.P.J. Oreska, C.J. Sanders, I.R.  2019.  Role of carbonate burial in blue carbon budgets.  Nature Communications. https://doi.org/10.1038/s41467-019-08842-6.

Needelman, B., I. Emmer, S. Emmett-Mattox, S. Crooks, P. Megonigal, D. Meyers, M. Oreska, and K. McGlathery.  2018.  The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration.  Estuaries & Coasts.  41:2159-2171
DOI 10.1007/s12237-018-0429-0

Needelman, B., I. Emmer, S. Emmett-Mattox, S. Crooks, P. Megonigal, D. Meyers, M. Oreska, and K. McGlathery.  2018.  The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration.  Estuaries & Coasts.  41:2159-2171
DOI 10.1007/s12237-018-0429-0
 
Berg, P., M. L. Delgard, R. N. Glud, M. Huettel, C. E. Reimers, M. L. Pace.  2017.  Non-invasive Flux Measurements at the Benthic Interface: the Aquatic Eddy Covariance Technique. Limnology and Oceanography: e-Lectures. DOI: 10.1002/loe2.10005.

Oreska, M. J. P., K. McGlathery, G. Wilkinson, M. Bost, and B. McKee.  2017a. Allochthonous carbon contributions to seagrass bed blue carbon. Limnology and Oceanography. DOI 10.1002/lno.10718
 
Oreska, M.P.J., K.J. McGlathery, J.H. Porter, M. Bost, and B.A. McKee.  2017b.  Seagrass blue carbon accumulation at the meadow-scale. PLOS ONE. 
DOI 10.1371/journal.pone.0176630
 
Oreska, M., K. McGlathery, I. Emmer, B. Needelman, S. Emmett-Mattox, S. Crooks, P. Megonigal, and D. Meyers.  2017c.  Comment on Geoengineering with seagrasses: is credit due where credit is given?  Environmental Research Letters.

Greiner, J. T., G. M. Wilkinson, K. J. McGlathery and K. A. Emery. 2016. Sources of sediment carbon sequestered in restored seagrass meadows.  Marine Ecology Progress Series 551:107-115.
 
Rheuban, J. E., P. Berg, and K. J. McGlathery. 2014a. Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina L.) measured by eddy correlation. Limnology and Oceanography. 59(4): 1376-1387. doi: 10.4319/lo.2014.59.4.1376
 
Rheuban, J. E., P. Berg, and K. J. McGlathery. 2014b. Seasonal oxygen metabolism in restored Zostera marina meadows measured by eddy correlation. Marine Ecology Progress Series 507: 1-13. doi: 10.3354/meps10843.
 
Greiner, J. T., K. J. McGlathery, J. Gunnell, and B. A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters.  PLoS ONE 8(8): e72469. doi:10.1371/journal.pone.0072469

Rheuban, J., P. Berg. 2013. The effect of benthic surface heterogeneity on eddy correlation flux measurements. Limnology and Oceanography: Methods. 11:351-359

Fourqurean, J. W., C. M. Duarte, H. Kennedy, N. Marba, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. A. Kendrick, D. Krause-Jensen, K. J. McGlathery, and O. Serrano.  2012.  Global carbon stocks in seagrass ecosystems.  Nature – Geosciences.  doi: 10.1038/NGEO1477.
 
Hume, A., P. Berg, and K. J. McGlathery.  2011. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique.  Limnology & Oceanography 56: 86-96.
 
Berg, P., H. Røy, P. L. Wiberg. 2007. Eddy correlation flux measurements – the sediment surface area that contributes to the flux. Limnology and Oceanography. 52:1672-1684.
 
Berg, P., H. Røy, F. Janssen, V. Meyer, B. B. Jørgensen, M. Hüttel, and D. de Beer. 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy correlation technique. Marine Ecology Progress Series. 261:75-83.